Fabian Hartmann
Universität Würzburg, Germany
Title: Logical stochastic resonance with a coulomb-coupled quantum dot rectifier
Biography
Biography: Fabian Hartmann
Abstract
The exploitation of excess heat and noise has become a topical and significant branch of research, especially in electronics, where an ongoing trend towards sustainable, energy efficient and autonomous systems can be observed. Such a reuse is mainly possible by utilizing nonlinear systems and phenomena like e.g. stochastic resonance (SR) which enhances weak input signals by coupling to a noise floor. Furthermore, noise can improve the operation of logic gates: logical stochastic resonance (LSR) renders logic gates fault tolerant and reliable when the noise is situated in a suitable range. Both LSR and SR have in common the improvement of functional capabilities by application of noise to a system. Here, we present a Coulomb-coupled quantum dot (QD) device that is capable of generating a current through a QD by rectifying voltage fluctuations applied to the other QD. The magnitude and sign of the rectified current can be switched and controlled by external gates, and using these gates as logic inputs, enables the realization of various Boolean logic gate operations. Dependent on the noise amplitude and the control gate voltage, the device features AND, OR, NAND and NOR gate functionalities which can be switched between by either solely changing the noise magnitude or by a sole variation of the control gate voltage.